and lubricants. We believe these findings also underscore the value of affirmative models of sexual health. Attending to pleasure and sexual well-being for both young men and women could gain new insights compared with a disease model alone.

About the Authors
Jenny A. Higgins is with Gender and Women’s Studies, University of Wisconsin-Madison. Yu Wang is with the Department of Sociology, University of Wisconsin-Madison.

Contributors
J. A. Higgins conceived the study design, oversaw the analyses, and took the lead in writing the article. Y. Wang managed the data, conducted analyses, created tables, and assisted with article preparation.

Acknowledgments
During analysis and article preparation, J. A. Higgins was supported by an NIH K12 award (K12HD055894) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). J. A. Higgins and Y. Wang also received support from an NICHD Population Research Infrastructure grant (P2C HD047873). An internal grant from the University of Wisconsin-Madison Graduate School also helped fund this analysis.

Note. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding organizations.

Human Participant Protection
Data for the analyses came from a de-identified, public use data set from the National Center for Health Statistics (Centers for Disease Control and Prevention).

References
perceived burden on teachers and students, issues of student privacy, and the possibility of stigmatizing students with unhealthy weight. Children who visit health care facilities routinely have their height and weight measured using precision scales and stadiometers, so values from this population may accurately estimate regional obesity. In this report, we compared the mean body mass index z-scores (BMI-Z) in a hospital-based sample with a school-based sample to determine whether a hospital-based sample could be used to estimate regional obesity levels.

METHODS

Our study was a secondary analysis of data collected for previously described studies. The hospital-based sample, or hospital group, included consecutive patients aged 2 to 18 years who presented to the emergency department or orthopedic clinic at London Health Sciences Centre in London, Ontario, over a 9-month period in 2007 to 2008. Height and weight were measured by staff as part of their visits. The school-based sample, or school group, was collected between 2011 and 2013.
and included a representative sample of children aged 9 to 14 years who attended 1 of the 31 randomly selected elementary schools throughout southwestern Ontario. Height and weight were measured by study staff, whereas postal codes and basic sociodemographic characteristic data were collected using a parent survey. Our analysis was limited to residents of London who were 10 to 13 years old.

Measures and Statistical Analysis

Age- and gender-independent BMI-Z was calculated.\(^4\) Age, gender, and median family income were used as control variables. Because individual-level income was unavailable, we used median family income of the dissemination area (DA) in which the child resided.\(^5\) To determine DA median family income\(^6\) for each child, home locations based on postal code centroids were mapped in a geographic information system,\(^7\) and DA-level income was spatially joined to the intersected home location.

We performed 4 analyses using SPSS Statistics version 21 (IBM, Armonk, NY). We used a difference-in-means test to compare group differences in BMI-Z; a \(\chi^2\) test to compare distributions of gender, age, and income, which are 3 well-known correlates of BMI\(^8-11\); and a series of difference-in-means tests to compare group differences in BMI-Z across age, gender, and income. We used the Mann–Whitney–Wilcoxon (non-normal) and independent samples \(t\)-test (normal), as determined by a Kolmogorov–Smirnov test of normality. An analysis of covariance (ANCOVA) was used to determine if controlling for age, gender, and income eliminated between-group differences in BMI-Z.

RESULTS

The spatial distribution of BMI-Z for each group is shown in Figure 1, and the analysis results are listed in Table 1. The mean BMI-Z in the hospital group was significantly greater than that in the school group. Our \(\chi^2\) analysis to compare the distribution of key demographic characteristic data found significant differences between the distribution of gender (\(\chi^2 = 15.749; P < .001\)) and age (\(\chi^2 = 50.166; P < .001\)), but not income (\(\chi^2 = 5.267; P = .076\)).

We used a series of \(t\)-tests and ANCOVA tests to determine if significant differences between hospital and school groups existed. When stratified by gender, BMI-Z was significantly higher among boys in the hospital group. When stratified by age, BMI-Z among 11- and 12-year-old children was significantly higher in the hospital group. Stratifying the 2 groups by median family income found no significant differences in BMI-Z at any income level. When controlling for gender, age, and median family income independently, the ANCOVA analysis found the adjusted BMI-Z to be significantly different between school and hospital groups for each covariate.

After understanding how BMI-Z compared between the 2 groups in a bivariate analysis, we conducted an ANCOVA analysis to understand how BMI-Z differed between groups while controlling for gender, age, and income. Our final analysis adjusting the means for all 3 covariates found a significant difference between hospital and school groups (\(F = 7.216; P = .007\)). The margin of error with 95% confidence intervals (\(Z_{.025}\)SD/sqrt\(n\)) = 1.96 (1.24/sqrt(688)) was 0.09 or 9%.

DISCUSSION

Our study demonstrated that our school and hospital groups had significant differences in BMI-Z when controlling for 3 common correlates of obesity (gender, age, and income). There were a higher proportion of boys and low-income children in the hospital group and of girls in the school group, which was consistent with previous studies.\(^13\) We performed a bivariate analysis to compare BMI-Z between girls when controlling for family income; however, a covariance approach indicated that none of the 3 demographic variables accounted for variance in the BMI-Z. Therefore, our study added to the literature by suggesting that a hospital-based sample could not be used for estimating obesity levels among a general population.

These results led to further questions as to what characteristics of the hospital and school-based samples helped explain the differences in BMI-Z. Future research needs to compare the 2 groups while controlling for other correlates of obesity, such as characteristics of social and built environments. The limitations of our study included a moderate hospital sample size, school sampling strategy, lack of generalizability to other regions, and the inherent limitations of data derived from...
census data rather than individual family income.

About the Authors
Jason Gilliland is with the Human Environments Analysis Laboratory and with Geography, Pediatics, and Health Studies, University of Western Ontario, London. Andrew F. Clark is with the Human Environments Analysis Laboratory, University of Western Ontario. Marta Kobrynski and Guido Filler are with the Department of Pediatics, University of Western Ontario.

Correspondence should be sent to Jason Gilliland, 1151 Richmond Rd, University of Western Ontario, London, Ontario, Canada N6A 3K7 (e-mail: jgilliland@uwo.ca).

Acknowledgments
This work was supported by grants from Children’s Health Foundation (London, Ontario, Canada), Canadian Institutes of Health Research, and the Heart and Stroke Foundation of Canada.

We would like to thank Michael Miller for his guidance on statistical analysis.

Human Participant Protection
The study was approved by the institutional ethics review board of the University of Western Ontario (#13746E, #17918S) and ethics officers from the 4 school boards.

References